Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study.
نویسندگان
چکیده
Although behavioral studies suggest that pain distress may alter the perception of somatic stimulation, neural correlates underlying such alteration remain to be clarified. The present study was aimed to test the hypothesis that expectation of pain might amplify brain responses to somatosensory stimulation in the anterior cingulate cortex (ACC) and the region including parietal operculum and posterior insula (PO/PI), both of which may play roles in regulating pain-dependent behavior. We compared brain responses with and subjective evaluation of physically identical nonpainful warm stimuli between two psychologically different contexts: one linked with pain expectation by presenting the nonpainful stimuli randomly intermixed with painful stimuli and the other without. By applying the event-related functional magnetic resonance imaging technique, brain responses to the stimuli were assessed with respect to signal changes and activated volume, setting regions of interest on activated clusters in ACC and bilateral PO/PI defined by painful stimuli. As a result, the uncertain expectation of painful stimulus enhanced transient brain responses to nonpainful stimulus in ACC and PO/PI. The enhanced responses were revealed as a higher intensity of signal change in ACC and larger volume of activated voxels in PO/PI. Behavioral measurements demonstrated that expectation of painful stimulus amplified perceived unpleasantness of innocuous stimulus. From these findings, it is suggested that ACC and PO/PI are involved in modulation of affective aspect of sensory perception by the uncertain expectation of painful stimulus.
منابع مشابه
Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study.
Event-related functional magnetic resonance imaging was used to investigate brain processing of the signals ascending from peripheral C and Adelta fibers evoked by phasic laser stimuli on the right hand in humans. The stimulation of both C and Adelta nociceptors activated the bilateral thalamus, bilateral secondary somatosensory cortex, right (ipsilateral) middle insula, and bilateral Brodmann'...
متن کاملDoes it look painful or disgusting? Ask your parietal and cingulate cortex.
Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related func...
متن کاملStimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited.
Thanks to the seminal work of Wilder Graves Penfield (1891-1976) at the Montreal Neurological Institute, electrical stimulation is used worldwide to localize the epileptogenic cortex and to map the functionally eloquent areas in the context of epilepsy surgery or lesion resections. In the functional map of elementary and experiential responses he described through >20 years of careful explorati...
متن کاملReproducibility of human brain activity evoked by esophageal stimulation using functional magnetic resonance imaging.
Functional MRI is a popular tool for investigating central processing of visceral pain in healthy and clinical populations. Despite this, the reproducibility of the neural correlates of visceral sensation by use of functional MRI remains unclear. The aim of the present study was to address this issue. Seven healthy right-handed volunteers participated in the study. Blood oxygen level-dependent ...
متن کاملEmpathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain.
Perspective-taking is a stepping stone to human empathy. When empathizing with another individual, one can imagine how the other perceives the situation and feels as a result. To what extent does imagining the other differs from imagining oneself in similar painful situations? In this functional magnetic resonance imaging experiment, participants were shown pictures of people with their hands o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2000